常翠祖:2000个失败样品后,他成全球实现量子反常霍尔效应第一人

时间:2024-03-16来自:未知 点击:151

关于InnovatorsUnder35China榜单

一直以来,半导体材料都是集成电路最基本的组成部分。但是,随着芯片尺度的不断缩小,半导体材料的能量耗散已成为当代电子学领域的主要挑战。要解决这一问题,就必须采用低能耗甚至零能耗的新型材料来制作集成电路从而使整个系统的能耗降至最低。于是,探索能够替代半导体材料的新型材料便成为了凝聚态物理学家的主要研究使命之一。

2016年荣获诺贝尔物理学奖的研究—拓扑物质态之一,拓扑绝缘体,就是能够制作低能耗集成电路首选材料,已成为近年来凝聚态物理领域研究的热点。拓扑绝缘体的表面导电,内部体态绝缘,在拓扑效应的保护下可以实现表面电流的低能耗传输。理论物理学家预言,通过在拓扑绝缘体中掺杂磁性原子可以在不需要外加磁场的情况下实现量子霍尔效应,也就是量子反常霍尔效应。在量子反常霍尔效应中,利用材料内部自身磁场的激发便能产生零耗散边态电流。

2013年,年仅28岁的常翠祖是清华大学著名物理学家薛其坤院士的一名博士生,凭着对物理的直觉和执着,经过四年的不懈努力,终于在国际上首次制备了具有量子反常霍尔效应的磁性掺杂的拓扑绝缘体材料,并在实验中首次观测到了量子反常霍尔效应。这一工作发表在2013年初的《科学》杂志上,并且被2016年诺贝尔物理奖的官方报道详细介绍。凭借着这样一项重要的研究成果,常翠祖博士在国际凝聚态物理学术界一鸣惊人。他的导师薛其坤院士,已故斯坦福大学的张守晟教授,诺贝尔物理奖获得者杨振宁先生都表示,这是一项诺奖级别的研究工作。在赞誉和荣誉的背后,只有作为实验骨干人员的常翠祖知道在这条道路上经历了多少挫折,付出了多少努力。

常翠祖在采访中表示,在实验中实现量子反常霍尔效应必须满足三个条件:首先,拓扑绝缘体材料的厚度必须控制在4-5纳米之间;其次,该样品必须通过磁性离子掺杂来实现铁磁效应;第三,样品的体态必须处于绝缘态。这三个条件缺一不可,但同时达成这三个条件非常困难,打个比方就是一个人“既要有姚明的高度,又要有博尔特的速度”。常翠祖从2008年开始研究这一课题,先后制备了2000多个样品,无数次的失败也让他曾经产生过怀疑,也曾经想过要放弃,但是对物理的热爱和执着以及不服输的精神让他坚持了下来,并最终在2012年10月12日第一次在实验中观测到了量子反常霍尔效应。常翠祖说,四年的研究历程基本上是上半年修仪器,下半年做实验,期间解决了一个又一个的难题,在这个过程当中他也取得了其他很多很有意义的成果,这些成果所发表的论文足以满足博士毕业的要求,而量子反常霍尔效应的最终实现算是对自己四年努力的一个肯定和奖励。

四年的博士后研究结束之后,世界上许多顶级研究机构向常翠祖伸出了橄榄枝,经过深思熟虑之后他最终选择了以凝聚态物理见长的宾夕法尼亚州立大学。常翠祖于2017年2月成为宾夕法尼亚州立大学物理系一名助理教授,并迅速搭建了自己的实验室并组建了自己的研究组。他通过构造新型的量子反常霍尔结构,于2018年在实验中观测到了一种叫“轴子(axion)绝缘体”的新型拓扑物质态。轴子绝缘体态由2004年诺奖得主FrankWilczek于1987年首次在粒子物理中提出,它在凝聚态物理中的实现对物理学领域内任意子(既不是费米子也不是玻色子的粒子)的研究具有重大意义。

常翠祖将继续在宾夕法尼亚州立大学从事低维拓扑材料和量子反常霍尔效应相关的研究,他目前的研究目标是通过发现新的拓扑材料和构造新的量子结构把量子反常霍尔效应的实现温度提高到液氮温区。常翠祖表示,如果量子反常霍尔效应跨过了液氮温度这一大关,将彻底解决人类社会对于低能耗电子元器件的需求,从而实现人类梦寐以求的量子计算机。


参考资料